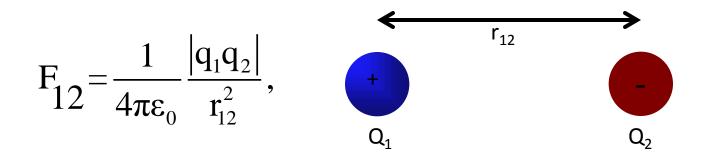
Lecture-2

Field intensity, Electric field due to charge distribution, Electric flux density

Pradeep Singla

Coulomb's Law: The Big Picture

Coulomb's Law quantifies the interaction between charged particles.

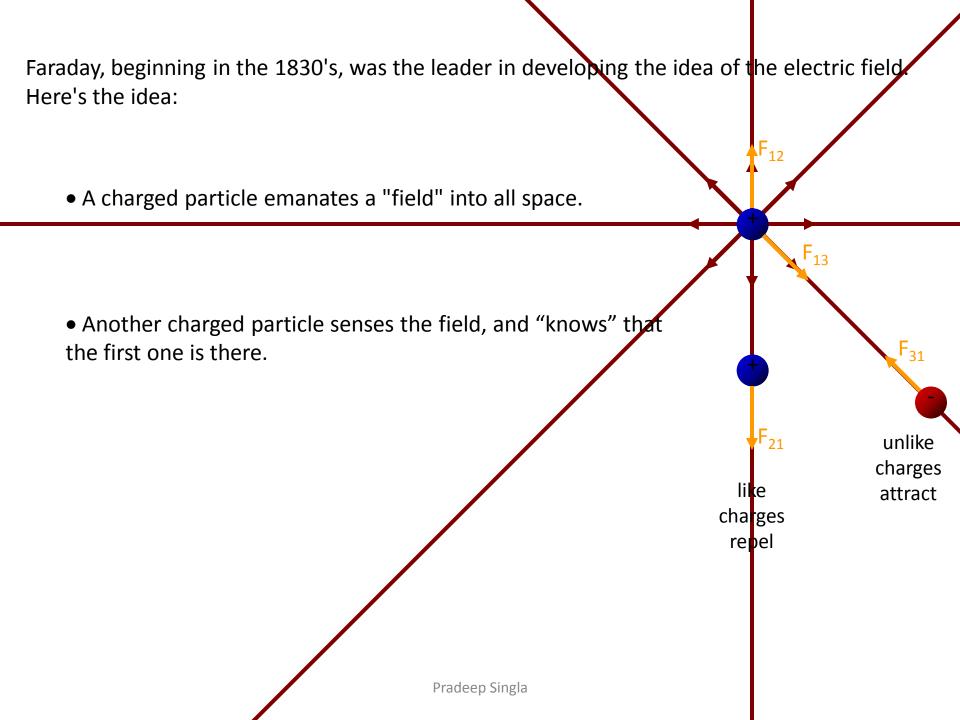


Coulomb's Law was discovered through decades of experiment.

The Electric Field

Coulomb's Law (demonstrated in 1785) shows that charged particles exert forces on each other over great distances.

How does a charged particle "know" another one is "there?"



We define the electric field by the force it exerts on a test charge q_0 :

$$\vec{E} = \frac{\vec{F}_0}{q_0}$$

If the test charge is "too big" it perturbs the electric field, so the "correct" definition is

$$\vec{\mathrm{E}} = \lim_{\mathbf{q}_0 \to 0} \frac{\vec{\mathrm{F}}_0}{\mathbf{q}_0}$$

You won't be required to use this version of the equation.

Any time you know the electric field, you can use this equation to calculate the force on a charged particle in that electric field. $Pradeep \vec{E}_{irrg} | \vec{E}$

The units of electric field are Newtons/Coulomb
$$\begin{bmatrix} \vec{E} \end{bmatrix} = \frac{\begin{bmatrix} \vec{F}_0 \end{bmatrix}}{\begin{bmatrix} q_0 \end{bmatrix}} = \frac{N}{C}$$

Later you will learn that the units of electric field can also be expressed as volts/meter:

$$\left[E\right] = \frac{N}{C} = \frac{V}{m}$$

The electric field exists independent of whether there is a charged particle around to "feel" it.

Remember: the electric field direction is the direction a + charge would feel a force.

A + charge would be repelled by another + charge.

Therefore the direction of the electric field is away from positive (and towards negative).

The Electric Field Due to a Point Charge

Coulomb's law says

$$F_{12} = k \frac{|q_1 q_2|}{r_{12}^2},$$

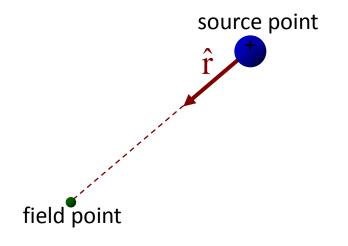
... which tells us the electric field due to a point charge q is

$$\vec{E}_q = k \frac{|q|}{r^2}$$
, away from + ...or just...

$$E = k \frac{|q|}{r^2}$$

This is your third starting equation.

We define as a funit vector from the source point to the field point:



The equation for the electric field of a point charge then becomes:

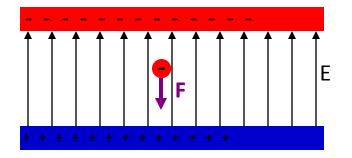
$$\vec{E} = k \frac{q}{r^2} \hat{r}$$

Motion of a Charged Particle in a Uniform Electric Field

A charged particle in an electric field experiences a force, and if it is free to move, an acceleration.

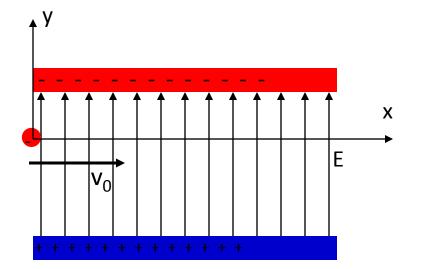
If the only force is due to the electric field, then

$$\sum \vec{F} = m\vec{a} = q\vec{E}.$$



If E is constant, then a is constant, and you can use the equations of kinematics.

Example: an electron moving with velocity v_0 in the positive x direction enters a region of uniform electric field that makes a right angle with the electron's initial velocity. Express the position and velocity of the electron as a function of time.



The Electric Field Due to a Collection of Point Charges

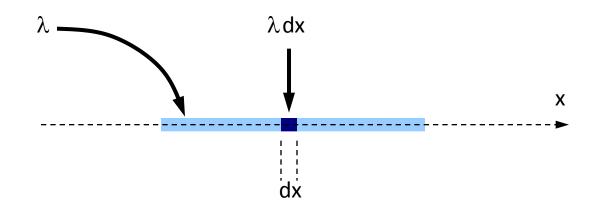
The electric field due to a small "chunk" Δq of charge is

$$\Delta \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\Delta q}{r^2} \hat{r}$$
unit vector from Δq to
wherever you want to
calculate ΔE

The electric field due to collection of "chunks" of charge is

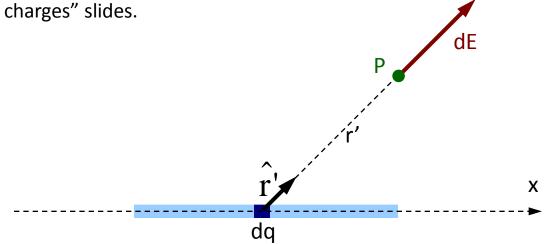
$$\vec{E} = \sum_{i} \Delta \vec{E}_{i} = \frac{1}{4\pi\epsilon_{0}} \sum_{i} \frac{\Delta q_{i}}{r_{i}^{2}} \hat{r}_{i}$$
As $\Delta q \rightarrow dq \rightarrow 0$, the sum becomes an integral.
$$(unit vector from \Delta q_{i})$$
to wherever you want to calculate E

If charge is distributed along a straight line segment parallel to the x-axis, the amount of charge dq on a segment of length dx is λdx .



 λ is the linear density of charge (amount of charge per unit length). λ may be a function of position.

Think $\lambda \Leftrightarrow \Leftrightarrow$ length. λ times the length of line segment is the total charge on the line segment. ℓ I'm assuming positively charged objects in these "distribution of charges" slides.

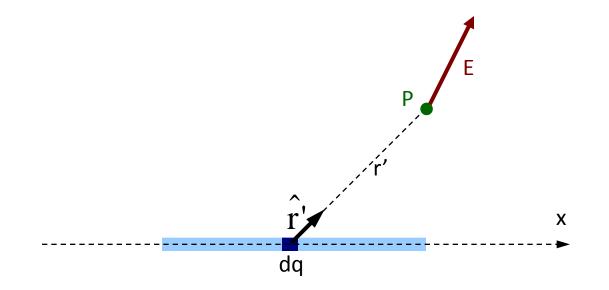


The electric field at point P due to the charge dq is

$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r'^2} \hat{r'} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda dx}{r'^2} \hat{r'}$$

$$dE = k \frac{|dq|}{r^2}$$

Pradeep Singla



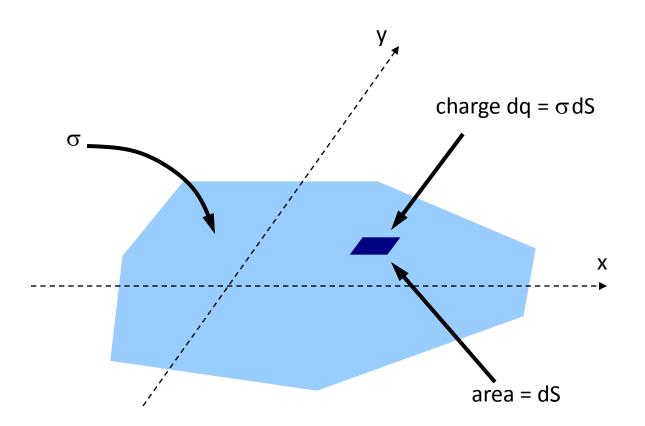
The electric field at P due to the entire line of charge is

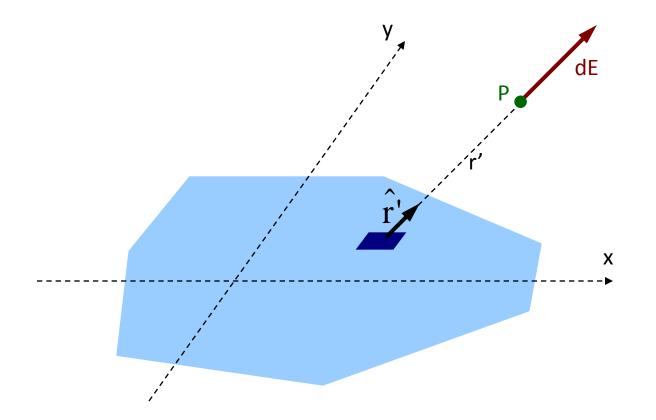
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \int \hat{r'} \frac{\lambda(x) \, dx}{{r'}^2} \, .$$

The integration is carried out over the entire length of the line, which need not be straight. Also, λ could be a function of position, **and can be taken outside the integral only if the charge distribution is uniform**.

Pradeep Singla

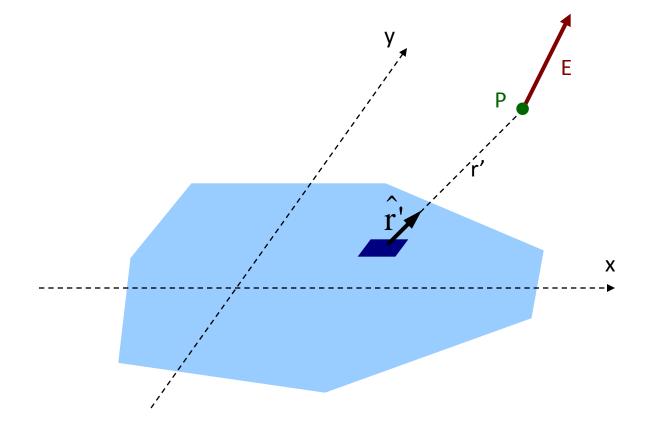
If charge is distributed over a two-dimensional surface, the amount of charge dq on an infinitesimal piece of the surface is σdS , where σ is the surface density of charge (amount of charge per unit area).





The electric field at P due to the charge dq is

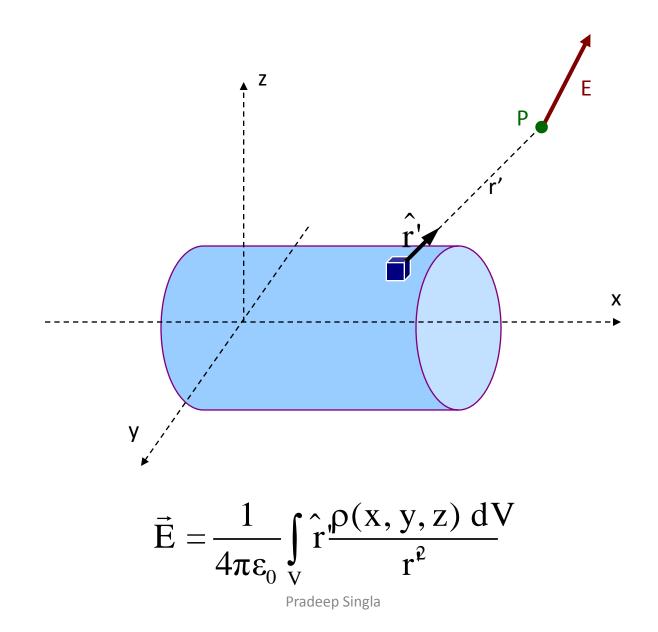
$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r'^2} \hat{r'} = \frac{1}{4\pi\varepsilon_0} \frac{\sigma dS}{r'^2} \hat{r'}$$



The net electric field at P due to the entire surface of charge is

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \int_{S} \hat{r} \frac{\sigma(x, y) dS}{r^2}$$

After you have seen the above, I hope you believe that the net electric field at P due to a three-dimensional distribution of charge is...

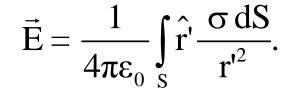


Summarizing:

Charge distributed along a line:

$$\vec{\mathrm{E}} = \frac{1}{4\pi\varepsilon_0} \int \hat{\mathrm{r}}' \frac{\lambda \, \mathrm{d} \mathrm{x}}{{\mathrm{r'}}^2}.$$

Charge distributed over a surface:

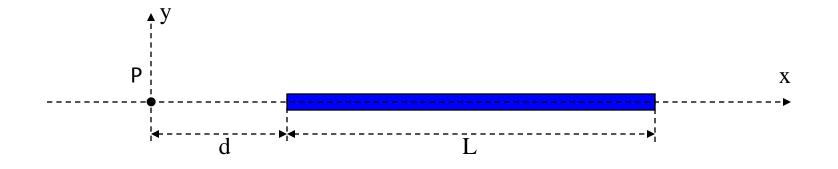


Charge distributed inside a volume:

 $\vec{\mathrm{E}} = \frac{1}{4\pi\varepsilon_0} \int_{\mathrm{V}} \hat{\mathbf{r}'} \frac{\rho \, \mathrm{dV}}{{\mathbf{r'}}^2}.$

If the charge distribution is uniform, then $\lambda,\sigma,$ and ρ can be taken outside the integrals.

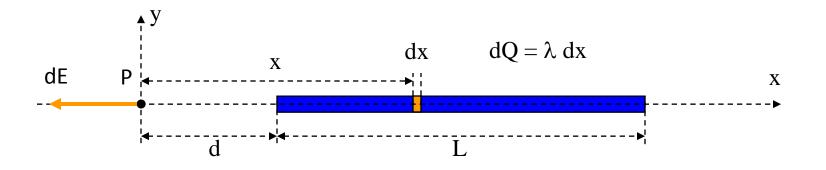
The Electric Field Due to a Continuous Charge Distribution (worked examples) Example: A rod of length L has a uniform charge per unit length λ and a total charge Q. Calculate the electric field at a point P along the axis of the rod at a distance d from one end.



Let's put the origin at P. The linear charge density and Q are related by

$$\lambda = \frac{Q}{L}$$
 and $Q = \lambda L$

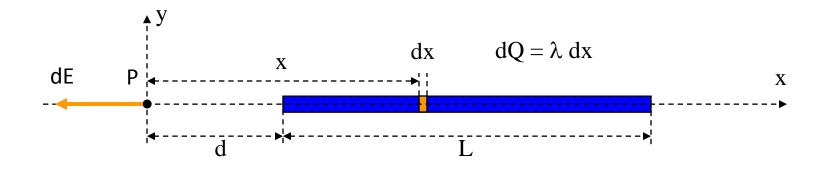
Let's assume Q is positive.



The electric field points away from the rod. By symmetry, the electric field on the axis of the rod has no y-component. dE from the charge on an infinitesimal length dx of rod is

$$dE = k \frac{dq}{x^2} = k \frac{\lambda \, dx}{x^2}$$

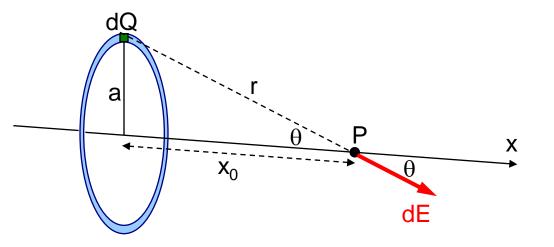
Note: dE is in the –x direction. dE is the magnitude of dE. I've used the fact that $\overrightarrow{Q>0}$ (so dq=0) to eliminate the absolute value signs in the starting equation.



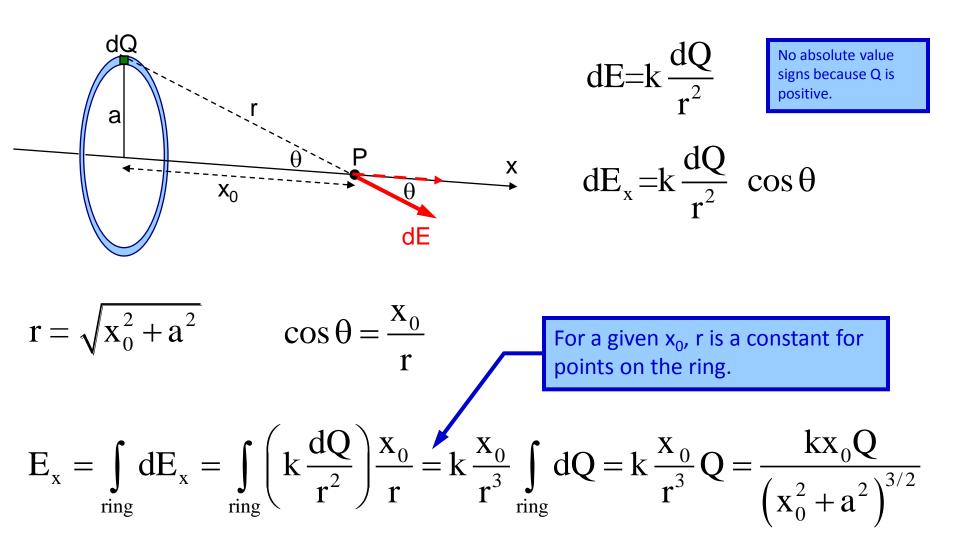
$$\vec{E} = \int_{d}^{d+L} d\vec{E}_{x} = -k \int_{d}^{d+L} \frac{\lambda \, dx}{x^{2}} \hat{i} = -k \lambda \int_{d}^{d+L} \frac{dx}{x^{2}} \hat{i} = -k \lambda \left(-\frac{1}{x}\right)_{d}^{d+L} \hat{i}$$

$$\vec{E} = -k\lambda \left(-\frac{1}{d+L} + \frac{1}{d} \right) \hat{i} = -k\lambda \left(\frac{-d+d+L}{d(d+L)} \right) \hat{i} = -k\frac{\lambda L}{d(d+L)} \hat{i} = -\frac{kQ}{d(d+L)} \hat{i}$$

Example: A ring of radius a has a uniform charge per unit length and a total positive charge Q. Calculate the electric field at a point P along the axis of the ring at a distance x_0 from its center.

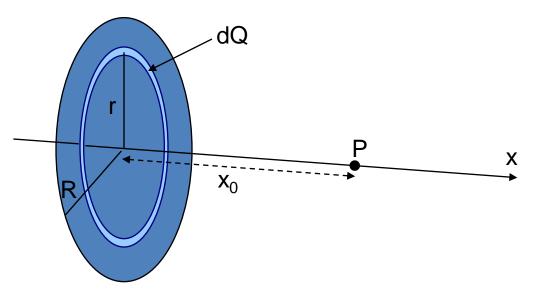


By symmetry, the y- and z-components of E are zero, and all points on the ring are a distance r from point P.



Or, in general, on the ring axis $E_{x,ring} = \frac{kxQ}{\left(x^2 + a^2\right)^{3/2}}.$ Pradeep Singla

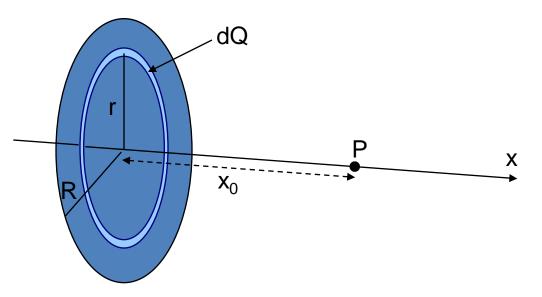
Example: A disc of radius R has a uniform charge per unit area σ . Calculate the electric field at a point P along the central axis of the disc at a distance x_0 from its center.



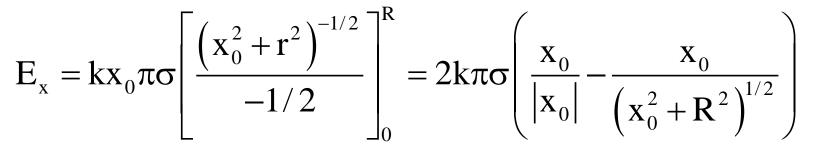
The disc is made of concentric rings. The area of a ring at a radius r is $2\pi r dr$, and the charge on each ring is $\sigma(2\pi r dr)$.

We can use the equation on the previous slide for the electric field due to a ring, replace a by r, and integrate from r=0 to r=R.

$$dE_{ring} = \frac{kx_0\sigma 2\pi r dr}{\left(x_0^2 + r^2\right)^{3/2}}.$$
Pradeep Singla



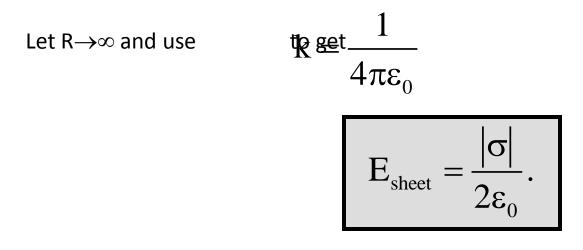
$$E_{x} = \int_{\text{disc}} dE_{x} = \int_{\text{disc}} \frac{kx_{0}\sigma 2\pi r dr}{\left(x_{0}^{2} + r^{2}\right)^{3/2}} = kx_{0}\pi\sigma\int_{0}^{R} \frac{2r dr}{\left(x_{0}^{2} + r^{2}\right)^{3/2}}$$



Pradeep Singla

Example: Calculate the electric field at a distance x_0 from an infinite plane sheet with a uniform charge density σ .

Treat the infinite sheet as disc of infinite radius.



Interesting...does not depend on distance from the sheet.